3.4.86 \(\int \frac {\sec ^{11}(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\) [386]

Optimal. Leaf size=73 \[ \frac {8 i a^2 \sec ^{11}(c+d x)}{143 d (a+i a \tan (c+d x))^{11/2}}+\frac {2 i a \sec ^{11}(c+d x)}{13 d (a+i a \tan (c+d x))^{9/2}} \]

[Out]

8/143*I*a^2*sec(d*x+c)^11/d/(a+I*a*tan(d*x+c))^(11/2)+2/13*I*a*sec(d*x+c)^11/d/(a+I*a*tan(d*x+c))^(9/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {3575, 3574} \begin {gather*} \frac {8 i a^2 \sec ^{11}(c+d x)}{143 d (a+i a \tan (c+d x))^{11/2}}+\frac {2 i a \sec ^{11}(c+d x)}{13 d (a+i a \tan (c+d x))^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^11/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

(((8*I)/143)*a^2*Sec[c + d*x]^11)/(d*(a + I*a*Tan[c + d*x])^(11/2)) + (((2*I)/13)*a*Sec[c + d*x]^11)/(d*(a + I
*a*Tan[c + d*x])^(9/2))

Rule 3574

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(
d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rule 3575

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Dist[a*((m + 2*n - 2)/(m + n - 1)), Int[(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0]
 && IGtQ[Simplify[m/2 + n - 1], 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\sec ^{11}(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx &=\frac {2 i a \sec ^{11}(c+d x)}{13 d (a+i a \tan (c+d x))^{9/2}}+\frac {1}{13} (4 a) \int \frac {\sec ^{11}(c+d x)}{(a+i a \tan (c+d x))^{9/2}} \, dx\\ &=\frac {8 i a^2 \sec ^{11}(c+d x)}{143 d (a+i a \tan (c+d x))^{11/2}}+\frac {2 i a \sec ^{11}(c+d x)}{13 d (a+i a \tan (c+d x))^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.84, size = 82, normalized size = 1.12 \begin {gather*} -\frac {2 i \sec ^9(c+d x) (\cos (2 (c+d x))-i \sin (2 (c+d x))) (-15 i+11 \tan (c+d x))}{143 a^3 d (-i+\tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^11/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

(((-2*I)/143)*Sec[c + d*x]^9*(Cos[2*(c + d*x)] - I*Sin[2*(c + d*x)])*(-15*I + 11*Tan[c + d*x]))/(a^3*d*(-I + T
an[c + d*x])^3*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 143 vs. \(2 (61 ) = 122\).
time = 0.86, size = 144, normalized size = 1.97

method result size
default \(\frac {2 \left (128 i \left (\cos ^{7}\left (d x +c \right )\right )+128 \sin \left (d x +c \right ) \left (\cos ^{6}\left (d x +c \right )\right )-16 i \left (\cos ^{5}\left (d x +c \right )\right )+48 \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )-148 i \left (\cos ^{3}\left (d x +c \right )\right )-108 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+51 i \cos \left (d x +c \right )+11 \sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{143 d \cos \left (d x +c \right )^{6} a^{4}}\) \(144\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^11/(a+I*a*tan(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/143/d*(128*I*cos(d*x+c)^7+128*sin(d*x+c)*cos(d*x+c)^6-16*I*cos(d*x+c)^5+48*sin(d*x+c)*cos(d*x+c)^4-148*I*cos
(d*x+c)^3-108*cos(d*x+c)^2*sin(d*x+c)+51*I*cos(d*x+c)+11*sin(d*x+c))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^
(1/2)/cos(d*x+c)^6/a^4

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 764 vs. \(2 (57) = 114\).
time = 0.53, size = 764, normalized size = 10.47 \begin {gather*} -\frac {2 \, {\left (-15 i \, \sqrt {a} - \frac {38 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {88 i \, \sqrt {a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {278 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {213 i \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {920 \, \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {272 i \, \sqrt {a} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {1848 \, \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {182 i \, \sqrt {a} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {2548 \, \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {2548 \, \sqrt {a} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}} + \frac {182 i \, \sqrt {a} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {1848 \, \sqrt {a} \sin \left (d x + c\right )^{13}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{13}} + \frac {272 i \, \sqrt {a} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} - \frac {920 \, \sqrt {a} \sin \left (d x + c\right )^{15}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{15}} + \frac {213 i \, \sqrt {a} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}} - \frac {278 \, \sqrt {a} \sin \left (d x + c\right )^{17}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{17}} + \frac {88 i \, \sqrt {a} \sin \left (d x + c\right )^{18}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{18}} - \frac {38 \, \sqrt {a} \sin \left (d x + c\right )^{19}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{19}} + \frac {15 i \, \sqrt {a} \sin \left (d x + c\right )^{20}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{20}}\right )} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}^{\frac {7}{2}}}{143 \, {\left (a^{4} - \frac {10 \, a^{4} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {45 \, a^{4} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {120 \, a^{4} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {210 \, a^{4} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {252 \, a^{4} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + \frac {210 \, a^{4} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {120 \, a^{4} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} + \frac {45 \, a^{4} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}} - \frac {10 \, a^{4} \sin \left (d x + c\right )^{18}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{18}} + \frac {a^{4} \sin \left (d x + c\right )^{20}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{20}}\right )} d {\left (-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )}^{\frac {7}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^11/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

-2/143*(-15*I*sqrt(a) - 38*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 88*I*sqrt(a)*sin(d*x + c)^2/(cos(d*x + c)
 + 1)^2 - 278*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 213*I*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4
- 920*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 272*I*sqrt(a)*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 1848*s
qrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 182*I*sqrt(a)*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 2548*sqrt(a)*
sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 2548*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 + 182*I*sqrt(a)*sin(d
*x + c)^12/(cos(d*x + c) + 1)^12 - 1848*sqrt(a)*sin(d*x + c)^13/(cos(d*x + c) + 1)^13 + 272*I*sqrt(a)*sin(d*x
+ c)^14/(cos(d*x + c) + 1)^14 - 920*sqrt(a)*sin(d*x + c)^15/(cos(d*x + c) + 1)^15 + 213*I*sqrt(a)*sin(d*x + c)
^16/(cos(d*x + c) + 1)^16 - 278*sqrt(a)*sin(d*x + c)^17/(cos(d*x + c) + 1)^17 + 88*I*sqrt(a)*sin(d*x + c)^18/(
cos(d*x + c) + 1)^18 - 38*sqrt(a)*sin(d*x + c)^19/(cos(d*x + c) + 1)^19 + 15*I*sqrt(a)*sin(d*x + c)^20/(cos(d*
x + c) + 1)^20)*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(sin(d*x + c)/(cos(d*x + c) + 1) - 1)^(7/2)/((a^4
- 10*a^4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 45*a^4*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 120*a^4*sin(d*x +
c)^6/(cos(d*x + c) + 1)^6 + 210*a^4*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 252*a^4*sin(d*x + c)^10/(cos(d*x + c
) + 1)^10 + 210*a^4*sin(d*x + c)^12/(cos(d*x + c) + 1)^12 - 120*a^4*sin(d*x + c)^14/(cos(d*x + c) + 1)^14 + 45
*a^4*sin(d*x + c)^16/(cos(d*x + c) + 1)^16 - 10*a^4*sin(d*x + c)^18/(cos(d*x + c) + 1)^18 + a^4*sin(d*x + c)^2
0/(cos(d*x + c) + 1)^20)*d*(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)^(7
/2))

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 132 vs. \(2 (57) = 114\).
time = 0.44, size = 132, normalized size = 1.81 \begin {gather*} -\frac {128 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-13 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i\right )}}{143 \, {\left (a^{4} d e^{\left (12 i \, d x + 12 i \, c\right )} + 6 \, a^{4} d e^{\left (10 i \, d x + 10 i \, c\right )} + 15 \, a^{4} d e^{\left (8 i \, d x + 8 i \, c\right )} + 20 \, a^{4} d e^{\left (6 i \, d x + 6 i \, c\right )} + 15 \, a^{4} d e^{\left (4 i \, d x + 4 i \, c\right )} + 6 \, a^{4} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{4} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^11/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

-128/143*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-13*I*e^(2*I*d*x + 2*I*c) - 2*I)/(a^4*d*e^(12*I*d*x + 12*I
*c) + 6*a^4*d*e^(10*I*d*x + 10*I*c) + 15*a^4*d*e^(8*I*d*x + 8*I*c) + 20*a^4*d*e^(6*I*d*x + 6*I*c) + 15*a^4*d*e
^(4*I*d*x + 4*I*c) + 6*a^4*d*e^(2*I*d*x + 2*I*c) + a^4*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**11/(a+I*a*tan(d*x+c))**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3878 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^11/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^11/(I*a*tan(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Mupad [B]
time = 6.62, size = 91, normalized size = 1.25 \begin {gather*} \frac {128\,{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,13{}\mathrm {i}+2{}\mathrm {i}\right )\,\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}}{143\,a^4\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^11*(a + a*tan(c + d*x)*1i)^(7/2)),x)

[Out]

(128*exp(- c*1i - d*x*1i)*(exp(c*2i + d*x*2i)*13i + 2i)*(a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d
*x*2i) + 1))^(1/2))/(143*a^4*d*(exp(c*2i + d*x*2i) + 1)^6)

________________________________________________________________________________________